Towards Monolithic Quantum Processors in Production

FDSOI CMOS Technology

Sorin P. Voinigescu, S. Bonen, U. Alakusu, M. Gong, M.S. Dadash, Y. Duan, L. Wu

IEEE SSCS Chapter Irvine, CA, November 15, 2019
Outline

- Introduction
- Quantum Processor SoCs
- Cryogenic characterization of 22nm FDSOI CMOS Technology
- Conclusions
Two-level quantum system

Natural systems:
- Natural spins $|\downarrow\rangle$, $|\uparrow\rangle$
- Orthogonally polarized light $|\uparrow\rangle$, $|\uparrow\rangle$

Effective systems:
- Isolate two levels from a manifold structure
 - Mechanisms: Energy separation, selection rules, ...
- Requires nonlinearity!

\[i\hbar \frac{d}{dt} \Psi(t) = \hat{H}(t) \Psi(t) = E(t) \Psi(t) \]

Control of two-level system

- Qubit is pseudo spin
 - Independent of qubit realization
 - Methods from nuclear magnetic resonance

- Basic idea
 - **Coherently** rotate spins by static or oscillating magnetic fields
 - Static fields parallel to quantization axis => free precession, changes ϕ on Bloch sphere
 - Oscillating fields perpendicular to quantization axis => change population, changes θ on Bloch sphere
Spin ½ hamiltonian in a rotating magnetic field

\[\hat{H}_S = \frac{g \mu_B}{2} \hat{\sigma} \cdot \vec{B} = \frac{g \mu_B}{2} \begin{bmatrix} B_z & B_x - i B_y \\ B_x + i B_y & -B_z \end{bmatrix} \]

\[i \hbar \frac{d}{dt} X(t) = \frac{g}{2} \mu_B \begin{bmatrix} B_z & B_x - i B_y \\ B_x + i B_y & -B_z \end{bmatrix} X(t) \]

\[\vec{B}(t) = B_{dc} + B_1(t) = (B_1 \cos \omega t, B_1 \sin \omega t, B_0) \]

\[\omega_0 = \omega_L = \frac{g \mu_B}{2 \hbar} B_{dc} \]

\[\omega_R = \frac{g \mu_B}{2 \hbar} B_1 \ll \omega_0 \]

\[\omega_0 = \text{qubit (Larmor) frequency}, \quad \omega_R = \text{Rabi frequency} \]

\[\hat{H} = \frac{g \mu_B}{2} \begin{bmatrix} B_0 & B_1 e^{-j \omega t} \\ B_1 e^{j \omega t} & -B_0 \end{bmatrix} = \hbar \begin{bmatrix} \omega_0 & \omega_R e^{-j \omega t} \\ \omega_R e^{j \omega t} & -\omega_0 \end{bmatrix} \]

\[U = e^{-i \hat{H}t} \text{ describes spin evolution in time} \]

\[|\Psi(t)\rangle = \cos \frac{\theta}{2} e^{-i(\psi + \omega_0 t)/2} |\uparrow\rangle + \sin \frac{\theta}{2} e^{i(\psi + \omega_0 t)/2} |\downarrow\rangle \]

\[\theta(t) = \theta = \text{constant in time}. \quad \phi(t) = \phi + \omega_0 t \]
Superconducting qubits: most common today

Superconducting Qubit:
- Nonlinear L-C Resonator with $Q > 1$ Million
- Josephson Junction is nonlinear inductor

Superconducting Microwave Resonators:
- read-out of qubit states
- multi-qubit quantum bus
- noise filter

$E_{01} \sim 5 \text{ GHz} \sim 240 \text{ mK}$
Google’s Josephson junction transmon qubit

J. Bardin et al., JSSC, Nov. 2019
Google’s 54-qubit superconducting processor: 10 mK

F. Arute et al., Nature 574, 505 (2019)
Semiconductor quantum dot qubits

- Qubits formed in QDs where electrons/holes are confined by an energy potential well created in the conduction/valence band of a semiconductor structure: Si, Si/SiGe MOSFET, FDSOI, FinFET
- QDs placed in close proximity to enable coupling which is a function of barrier height/thickness
- Two adjacent (usually lowest) energy levels in QD used to create basis states |0> and |1>

[W. Huang, Nature 2019]
[D.M. Zajec, Science 2018]
[L. Hutin, VLSI 2016]
[Intel, IEDM 2018]
Our approach and goals

- **Foundry FDSOI** CMOS-based QD qubits
 - SiGe p-MOSFET with channel/S-D heterojunction for hole spin qubit
- Investigate same and new spin control and readout techniques as SC qubits
- *mm-wave AMS circuits* for spin manipulation and readout *on the same die with the qubits*
- **2-4 K** operation now, *(maybe) 77 K* in 15 years
The SiGe p-MOSFET is the SiGe hole-spin qubit

- $L=18 \text{ nm}; \ W = 50 \text{ nm}$
- source/drain-to-channel heterojunction: $\Delta E_V = 35-40 \text{ meV}$
- $t_{oxe} = 1 \text{ nm} =>$ larger f_R than thick oxide/semiconductor qubits

Si$_{0.7}$Ge$_{0.3}$/Si$_{0.75}$Ge$_{0.25}$

[S. Bonen et al. EDL 2018]
Electron- and hole-spin DQD concept in FDSOI

- Double quantum-dot (DQD) qubit = 2-gate MOSFET cascode
- Quantum dot (QD) under each top gate
- Individual gate control of each QD
- Potential barrier between dots
- Back gate for entanglement control (needs special mask)
- mm-wave E-field applied on gate and z-axis dc magnetic field
Charge qubit concept in FDSOI

- Similar to charge coupled devices
- Gates control barriers (tunnel coupling, t) between QDs
- Degree of freedom is position of electron in DQD
- Voltage applied between dots creates detuning: $E_{P1} \neq E_{P2}$
- Rabi frequency from probability oscillation

$$f_R = \frac{2t}{2\pi\hbar}$$

$$\hat{H} = \begin{bmatrix} E_{P1} & t \\ t & E_{P2} \end{bmatrix}$$

$$|\psi(t)\rangle = a(t)|10\rangle + b(t)|01\rangle$$

[Image showing double-well potential with oscillatory occupancy of wells and probability amplitudes $a(t)$ and $b(t)$]
Equivalent circuit of Double Quantum Dot

- Tunnel barriers described by R_t, C_t
- Gate-to-dot (channel) capacitance $C_g = 20 \text{ aF} \ldots 30 \text{ aF}$
- Use charge conservation analysis: $\Delta Q = C \times \Delta V_g$ as in switched capacitor circuits
 where $Q_{1,2} = N_{1,2} \times q$
- $q = 1.6 \times 10^{-19} \text{ C} \Rightarrow \Delta V_g = 3-5 \text{ mV per electron/hole}$

[D.K. Ferry, et al. Ch.6, Nanostructures, 2005]
Comparison to other qubit families

- >20x f_L, f_R compared to SC qubits:
 - > 202x smaller readout resonators, > 20x higher operation temp.

- Larger g, f_R than vertically stacked SiGe/Si/SiGe FinFET qubit

- Backgate control for circuit V_T adjustment at low temperature

- Potential selective fast backgate for CNOT gate

- All spin control/readout schemes from SC qubits can be used
Outline

- Introduction

- **Quantum Processor SoCs**

- Cryogenic characterization of 22nm FDSOI CMOS Technology

- Conclusions
Classical controller

- **Three functions**
 - Initialization
 - Manipulation
 - Read-out

- **Phenomena employed**
 - Coulomb blockade
 - Pauli spin blockade
 - Quantum capacitance reflectometry

[L. Hutin, IMS 2019]
Nondemolition, dispersive (non-resonant)
• mm-wave reflection meas. (phase, amp)
 • narrow band
 • needs inductors (large area)
 • needs precision ADC

• Charge, current or voltage amplifier
 • SET/capacitive coupling needed
 • Broadband
 • Noisy, 1/f noise sensitive
Hole-spin monolithic quantum processor

- **Qubit array**
 - 0.5 pW (10pA/50mV) per qubit
 - 10^{10} qubits = 5 mW

- **Spin manipulation**
 - Low phase noise (OFDM) signal at f_L
 - 60-100 GHz for 3-5 K operation
 - 140-240 GHz for 8-12 K operation
 - n-MOSFET switch + phase pulse modulators

$$P_{dc} = 0; \quad P = \frac{f^2 R}{2 C} V_{DD}^2$$

- **SRAM** stores digital pulse sequences (gate operations)

Control/readout circuits dominate consumption. Integration limited by **cryostat lift**
Equal1.lab 22nm FDSOI QPU for 4 K Operation

Fully-integrated SoC
- Quantum
- Analog
- Mixed-signal
- Digital
Equal1.lab 22nm FDSOI Quantum Core

Quantum structure & tightly integrated control & interface

2D structure allows Topological quantum computer

Patented quantum structures in customized GlobalFoundries FDX process

[D. Leipold, et al. 2019]
Photon-enhanced interaction/entanglement

Voinigescu

Monolithic QPs in FDSOI

Outline

- Introduction
- Quantum Processor SoCs
- **Cryogenic characterization of 22nm FDSOI CMOS Technology**
- Conclusions
Measurement set-up at 2 K
Die QPU testing limited by padframe, cryostat lift

Monolithic QPs in FDSOI
Quantum behavior at low V_{DS} and 2 K

$V_{DS} = +/- 1 \text{ mV}$

$V_{BG} = +/- 0.5 \text{ V}$

$I_{SD'}, I_{DS}$, I_{SD}

[M. Gong et al. RFIC 2019]
Energy level spacing tuneable from backgate

ΔV_{GS} increases (doubles) at +/-2V back gate voltage as C_{gs} decreases

[S.Bonen et al. EDL 2018]
18nmx70nm p-MOSFET: I_{DS} vs V_{GS} and V_{DS}

- **Sign of I_{DS} follows V_{DS}**
- **Operates like a single hole transistor (single electron transistor)**
- **Regions of no current indicate bias regimes with integer number of trapped holes in the QD**
- **“Diamonds” with large ΔV_{DS} indicate large $E_2 - E_1$. Estimate ~15 meV for this device**
- **$E_2 - E_1$ limited by $W = 70$ nm**

$V_{BG} = \text{FLT}$

6.2 K

ΔV_{DS}

ΔV_{GS}
Resonant tunnelling current peaks widen over V_{GS} and decrease in $|I_{\text{DS}}|$ height as temperature increases.

More thermionic emission over both barriers of the QD as temperature increases.
Qubit operation temperature scaling

- f_L, T increase $\sim L^{-2}$, W^{-2} (very favourable scaling law)
- f_L, T increase linearly with dc magnetic field B_{dc}
 - $B_{dc} = 2.9T \Rightarrow \Delta E_m = 0.33\text{meV}, f_L = 80.4\text{ GHz}, T = 4\text{ K}, 22\text{-nm FDSOI}$
 - $B_{dc} = 8.6T \Rightarrow \Delta E_m = 1\text{meV}, f_L = 241.2\text{ GHz}, T = 12\text{ K}, 12\text{-nm feature?}$
 - $B_{dc} = 17.3T \Rightarrow \Delta E_m = 2\text{meV}, f_L = 582.4\text{ GHz}, T = 24\text{ K}, \text{SiGe BiCMOS?}$
- Magnetic field and double-dot coupling energy limit T, f_L
 - Higher gyromagnetic factor helps \Rightarrow hole spin in SiGe channel
“Classical” MOSFET behaviour in saturation

Floating Back Gates

$V_{GS} = 0.4 - 0.8\text{V}$

$I_{DS}\text{ (mA)}$

$V_{DS}\text{ (V)}$

300 K

3 K

40x20nx590nm MOSFETs

40x20nx590nm SG, 1x

$\text{f}_T\text{ 300K}$

$\text{f}_{MAX}\text{ 300K}$

$\text{f}_T\text{ 3K}$

$\text{f}_{MAX}\text{ 3K}$
Peak f_T, f_{MAX} current densities invariant with temp.
R_{poly} does not change over temperature

[3.3 K, 100 Ω polyres. vs. 200 Ω polyres.]

[300 K, 100 Ω polyres. vs. 200 Ω polyres.]

[M. Gong et al. RFIC 2019]
Parameter extraction at 2-3 K

- Need on-die calibration in 2 K mm-wave probe station (with magnetic field)
- Source/drain resistance confirms different barriers for p- and n-MOSFET

[M.J. Mecca et al. RFIC 2019]
Thick and Thin-Oxide Varactors: Q degrades

Voinigescu
Monolithic QPs in FDSOI
MoM Cap does not change but Q improves at 3 K

[M. Gong et al. RFIC 2019]
Monolithic integration of qubits and readout TIA

Challenges:
- Large gain, low power
- Bandwidth, noise
- Drive 50 Ω off chip with minimum size 1x18nmx70nm MOSFET
- Design kit models valid at 2-4 K

Voinigescu

Monolithic QPs in FDSOI
TIA and n-qubit+readout circuit vs. temperature

[S. Bonen et al. EDL 2018]
Specification and optimal TIA design for readout

- Amplify 1pA...1nA to 10 mV
 => $Z_{21} > 110 \, \text{dB} \Omega$
- Lowest possible noise
- $\text{BW} > f_L / 20$ ($f_L = 60-160$ GHz)
- $Z_{out} = 50 \, \Omega$
- $P_{DC} < 5 \, \text{mW}$

![Electron Spin Qubit Diagram]
Output spectrum measured with variable-amplitude sinusoidal signals applied to the gate of the DQD.

At -110dBm output power, the 4GHz sinusoidal signal is clearly visible above the noise floor. Based on the 251 kΩ TIA gain, this corresponds to $3pA_{rms}$ current at the input of the TIA.
Challenges

- Qubit fidelity $<<$ transistor fidelity \Rightarrow **Tradeoff: T vs. fidelity**
- Spin readout, qubit-to-qubit isolation
- Gyromagnetic-factor engineering for high-temp scaling
- $W_f \leq 50$ nm (limits operation temperature today)
- CNOT Gate (or other 2 qubit logic gate)
 - (Minor) process/mask changes still needed
- Entanglement across multiple qubits
Conclusions

- **Monolithic integration** of CMOS spin control/readout circuits and qubits
- **SiGe hole-spin qubit** in p-MOSFET channel
- > 60GHz spin-manipulation/readout low-noise, AMS circuits needed
- At 2-4 K, minimum-size 22nm FDSOI MOSFET can be used as qubit in the subthreshold and as “classical” transistor in saturation
- 100-qubit processor < 2 W, probable now at 2-4 K in 22-nm FDSOI
- Future scaling to 10nm qubit gate length and 15nm width => 77 K operation?
In a nut shell: The Trinity
Acknowledgments

• Prof. P. Asbeck, UC San Diego
• Dr. A. Muller, Dr. M. Iordanescu, Dr. G. Adam, Dr. D. Daughton, N. Messaoudi
 Prof. R. Mansour, Dr. D. Harame, Dr. Nigel Cave
• Dr. D. Leipold, Dr. G. Maxim
• NSERC and EU Horizon2020 IQubits project for funding
• GlobalFoundries for technology access and chip donations
• IMT Bucharest, Lakeshore, Keysight, and U Waterloo for cryo measurements
• Integrand for EMX software
• CMC and Jaro Pristupa for CAD tools and support
Acknowledgments

- Prof. P. Asbeck, UC San Diego
- Dr. A. Muller, Dr. M. Iordanescu, Dr. G. Adam, Dr. D. Daughton, N. Messaoudi
 Prof. R. Mansour, Dr. D. Harame, Dr. Nigel Cave
- Dr. D. Leipold, Dr. G. Maxim
- NSERC and EU Horizon2020 IQubits project for funding
- GlobalFoundries for technology access and chip donations
- IMT Bucharest, Lakeshore, Keysight, and U Waterloo for cryo measurements
- Integrand for EMX software
- CMC and Jaro Pristupa for CAD tools and support
Multi site measurements

- **IMT Bucharest: November 2017 to present**
 - Custom-built cryostat DC-67 GHz, 6 K – 300 K
 - DC and non-calibrated GSG 2-port S-params w/o B-field: TIA, transistors, quantum dots, passives

- **University of Waterloo, Ontario, Canada: March 2018**
 - Lakeshore CPX 3.3 K commercial system
 - DC and calibrated GSG 2-port S-params: Transistors, passives

- **Lake Shore Cryotronics, Westerville, Ohio, USA: June 2018**
 - Lakeshore CPX 2K commercial system
 - DC and calibrated GSG 2-port S-params: Single and double QDs, TIA
Semiconductor qubits

Information encoded in particle **spin** or **charge location**

Satisfies

\[i\hbar \frac{d|\psi(t)\rangle}{dt} = \hat{H}(t)|\psi(t)\rangle = E(t)|\psi(t)\rangle \]

Basis states

\[|\uparrow\rangle = |0\rangle; \quad |\downarrow\rangle = |1\rangle \]

Superposition states

\[|\Psi\rangle = a|\uparrow\rangle + b|\downarrow\rangle \]

- \(a \) and \(b \) are **complex** numbers
 - \(a = \cos(\theta/2), \quad b = e^{i\varphi}\sin(\theta/2) \)
 - \(|a|^2 + |b|^2 = 1 \)
 - Only **two deterministic real** variables: \(\varphi, \theta \) \(\Rightarrow \) coherent phase modulation

\[
\tan \theta \overset{\text{def}}{=} \sqrt{\frac{\Delta^2 + \tilde{\Delta}^2}{\epsilon}} \quad \text{with} \quad 0 \leq \theta \leq \pi
\]

\[
\tan \varphi \overset{\text{def}}{=} \frac{\tilde{\Delta}}{\Delta} \quad \text{with} \quad 0 \leq \varphi \leq 2\pi
\]
10 coupled double QD qubits with TIA readout

Improved gain and bandwidth

[M. Gong et al. RFIC 2019]
SiGe HBT performance improves at 6-80 K

0.1x4.5µm CBEBC

Voinigescu

Monolithic QPs in 22nm FDSOI