Millimeter-Wave Integrated Silicon Devices: Active versus Passive – The Eternal Struggle Between Good and Evil

Michele Spasaro and Domenico Zito

WIRELESS TRANSCEIVERS Electrical & Computer Engineering Aarhus University, Denmark

domenico.zito@eng.au.dk





### GOOD AND EVIL (1/2)



### GOOD AND EVIL (2/2)




### OUTLINE

- Silicon Technology Evolution
  - Active & Passive Devices
- Case Study: Low-Power Tuned mm-Wave LNA
  - Traditional Loss-Less Design Methodology
  - Advanced Loss-Aware Design Methodology
- Impact of Losses
  - Recalls on Noise Invariants
  - Results
- Conclusions

### Si TECH EVO: CMOS TECHS

- Ultra-scaled device evolution driven by charge control improvement and leakage current reduction
- Two fully depleted (FD) techs emerged with 22/28nm CMOS node (double patterned, high-k dielectrics, metal gate, strained silicon)



### Si TECH EVO: FinFET

- 7nm FinFET is the most advanced node in mass production
- Migration to **5nm** node already started:

Intel

 $-10nm \rightarrow 7nm$ 

Samsung

 $-7LPP \rightarrow 5LPE$ 

TSMC

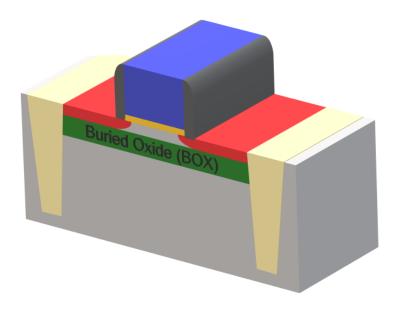
 $- \text{ N7P} \rightarrow \text{ N6} \rightarrow \text{ N5} \rightarrow \text{ N5P}$ 

- TeraPixel taped out world's 1st TSMC 5nm chip

FinFET

### Si TECH EVO: FD-SOI

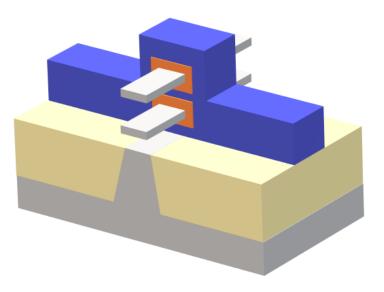
- CEA-Leti & STMicroelectronics (ST) developed the 1<sup>st</sup> FD-SOI tech in mass production
- 3 foundries offer FD-SOI devices:


ST — 28nm FD-SOI

GlobalFoundries (GF)

 $\textbf{-22FDX^{\texttt{®}} \rightarrow \texttt{12FDX}^{\texttt{TM}}}$ 

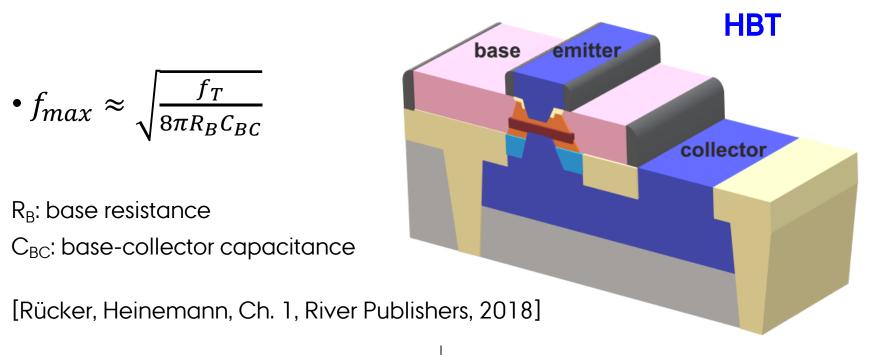
Samsung


- 28FDS  $\rightarrow$  18FDS



**FD-SOI** 

### Si TECH EVO: THE "LAST" TRANSISTORS


- **Samsung** will introduce a different transistor design starting from the **3nm** node
- The next transistor has already many names
  - gate-all-around
  - multi-bridge channel
  - nano-beam
  - nano-sheet

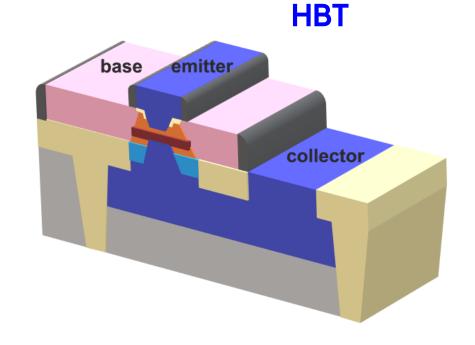


[Ye, Ernst, Khare, IEEE Spectrum, Jul. 2019]

### Si TECH EVO: SiGe BiCMOS TECHS

- Device evolution driven by higher frequency operations (f<sub>T,</sub>  $f_{max}$ ) and integration with scaled CMOS devices
- High-speed SiGe/SiGe:C Heterojunction Bipolar Transistors (HBTs) together with high-density CMOS



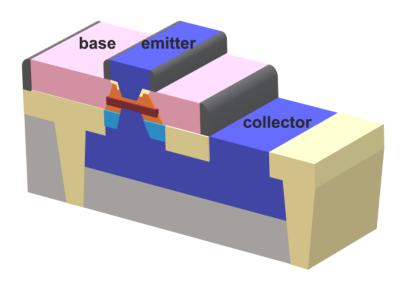

#### © WIRELESS TRANSCEIVERS 2019 IEEE ISC (CAS) 2019 - SINAIA (ROMANIA) - 11 OCTOBER 201

10

### Si TECH EVO: SiGe BiCMOS TECHS (f<sub>max</sub> ≥ 300 GHz)

### • ST

- BiCMOS055 (55nm)
- NXP
  - **90nm**
- GF
  - 9HP (90nm)
- Infineon (IFX)
  - B11HFC (130nm)
- IHP
  - SG13 (130nm)
- TowerJazz
  - 130nm

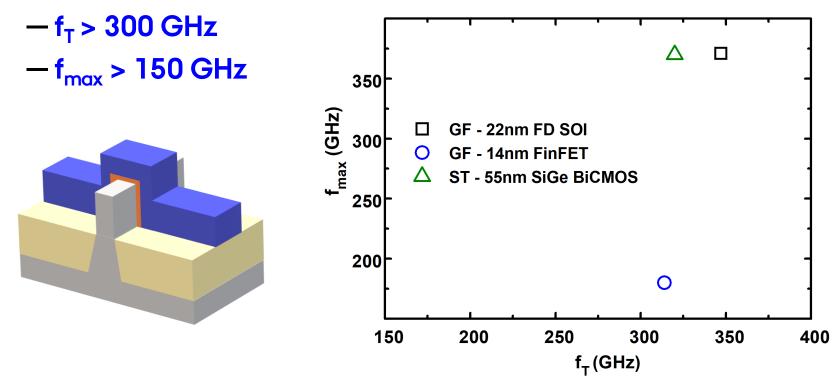



### Si TECH EVO: SIGE BICMOS EU PROJECTS

- DOTSEVEN (IFX, IHP, et al.)
  - SiGe HBT with  $f_{max}$  of 700 GHz
- ECSEL TARANTO (ST, IFX, IHP, et al.)
  - HBT with f<sub>max</sub> of 600 GHz integrated with high-density CMOS 130/90nm at IFX & 55/28nm at ST
  - f<sub>max</sub> of 700 GHz compatibile with IFX & ST BiCMOS processes

### Si TECH EVO: SiGe BiCMOS ADVANTAGES

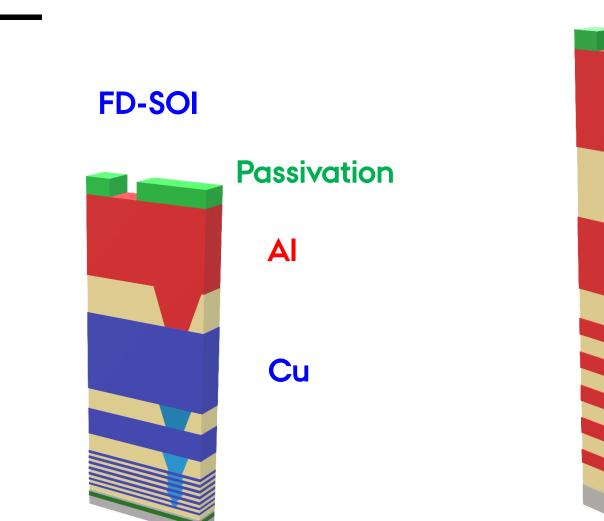
- **HBT**  $f_T$  less sensitive to parasitic capacitance of metal layers
- More mature back-end-of-line (BEOL), leading to better passives
- Lower costs




HBT

[Chevalier et al., IEEE BCICTS, 2018]

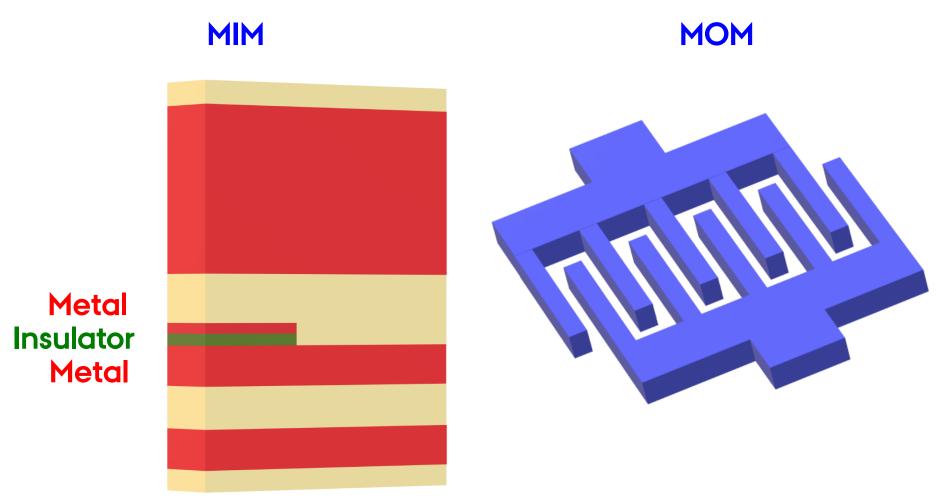
### Si TECH EVO: FOMs


• FinFET, FD-SOI and HBT devices commercially available

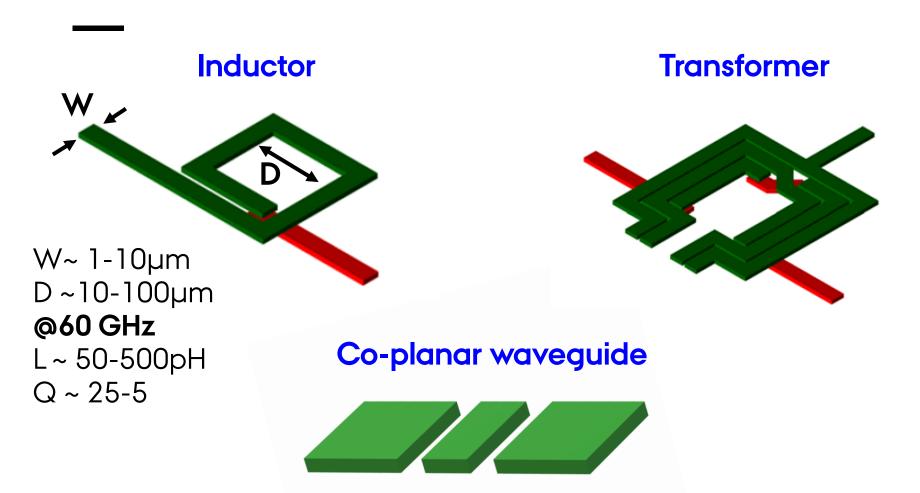


 Active devices have outstanding performances with great potential for high-frequency applications

[Ong et al., IEEE RFIC, 2018] [Chevalier et al., IEEE IEDM, 2014] RANSCEIVERS 2019 | IEEE ISC (CAS) 2019 - SINAIA (ROMANIA) - 11 OCTOBER 2019


### Si TECH EVO: BEOL




#### **BiCMOS**



### Si TECH EVO: CAPACITOR



### Si TECH EVO: INDUCTOR, TRANSFORMER, TX LINE



[Pepe, et al., "Design and test of W-band passive circuit components in 28nm bulk CMOS technology", 27<sup>th</sup> ISSC, 2016]

### Si TECH EVO: mm-WAVE APPLICATIONS

- These outstanding performances are enabling a plethora of applications
  - high data-rate communications for next generation wireless networks (5G and beyond)
  - high-speed wireline communications
  - autonomous and near-autonomous vehicles
  - virtual reality
  - radio astronomy
  - Earth observations
  - satellite communications
  - quantum computing

WIRELESS TRANSCEIVERS 2019 IEEE ISC (CAS) 2019 - SINAIA (ROMANIA) - 11 OCTOBER 2019

**FD-SOI** 

### SI TECH EVO: LOSSES IN PASSIVES - THE REAL BOTTLENECK (1/2)

- Most of technology efforts are addressed to active devices
- Losses in passive devices are limiting the performances of microwave and mm-wave ICs
- To quantify the impact, we consider the case of low noise amplifiers (LNAs), among the most critical building blocks in high-frequency transceivers

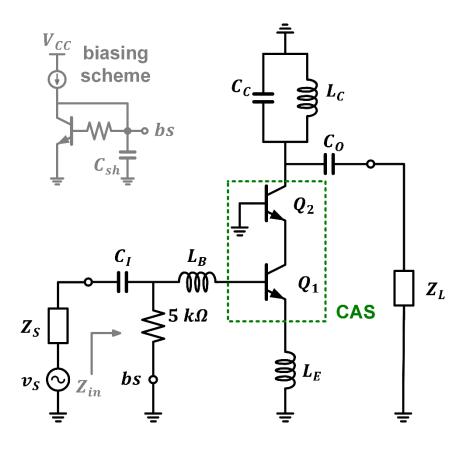
### SI TECH EVO: LOSSES IN PASSIVES - THE REAL BOTTLENECK (2/2)

- Most widespread theoretical approaches to LNA design are based on **lossless matching networks (MNs)**
- Because of losses in MN, the theoretical bounds to LNA performance are far to be achieved
- As a result, the full potential of the active devices is not exploited

### CASE STUDY: LOW-POWER TUNED mm-WAVE LNA

- To study the impact of MN lossess on LNA performance, we compare two LNA circuit topologies, each with its own design methodology
- The LNAs are designed in a **0.13µm SiGe:C BiCMOS** technology commercially available
- We address the design of high-frequency low power LNAs at 60 GHz

### CASE STUDY: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (1/3)

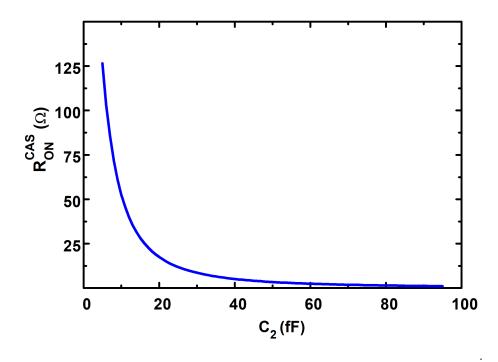

- Cascode with inductive degeneration
  - most widespread topology for tuned LNAs
- Lossless design methodology

- Area,  $L_E \& L_B$  sized such that

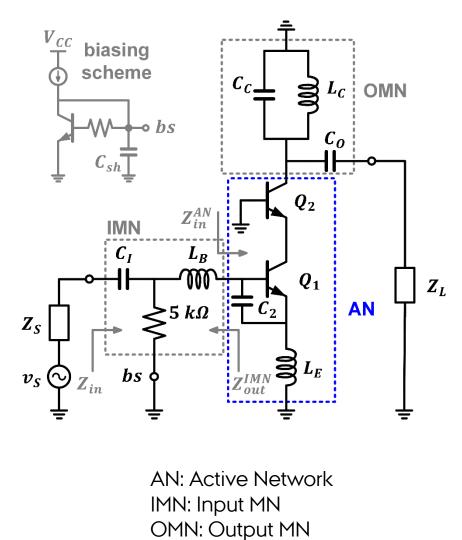
 $Z_S = Z_{in}^* = Z_{ON}$ 

Input Integrated Matching

[Voinigescu et al., IEEE JSSC, 1997] [Pepe et al., IEEE TCAS-I, 2018]




 $Z_{ON}$ : optimum-noise impedance  $Z_S$ : source impedance  $Z_{in}^*$ : conjugate of the input impedance


### CASE STUDY: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (2/3)

#### Low-power design variation

- additional capacitor ( $C_2$ )
- input integrated matching with smaller transistors

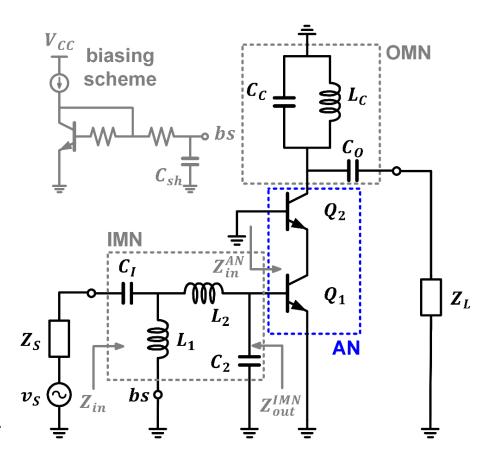


[Girlando, et al., IEEE TCAS-II, 1999]



### CASE STUDY: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (3/3)

• Input integrated matching for maximum power transfer and minimum noise figure (IIM for MPmN)

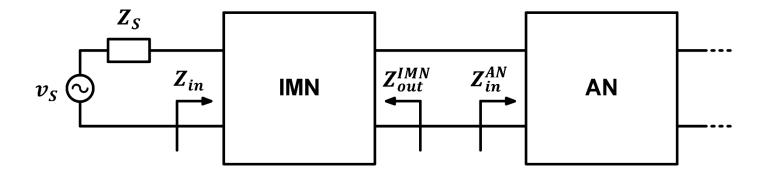

$$-Z_{in} = Z_S^*$$
$$-Z_{out}^{IMN} = Z_{oN}^{AN}$$

MNs considered as lossless

 $Z_{ON}^{AN}$ : AN optimum-noise impedance

### CASE STUDY: ADVANCED LOSS-AWARE DESIGN METHODOLOGY (1/4)

- Recently, we proposed an alternative circuit topology
  - IMN with 2 capacitors & 2 inductors
  - $-C_2-L_E$  feedback MN is removed
  - tailored to a **loss-aware design methodology**, also applicable to traditional LNA topology




[Spasaro, et al., "The Theory of Special Noise Invariants", IEEE TCAS-I, 2019] [Spasaro, et al., IEEE ICECS, 2018]

### CASE STUDY: ADVANCED LOSS-AWARE DESIGN METHODOLOGY (2/4)

• Because of the losses, the reflection coefficients ( $\Gamma_{in}^{IMN}$ ,  $\Gamma_{out}^{IMN}$ ) at the two ports of IMN are unequal

$$|\Gamma_{in}^{IMN}| \neq |\Gamma_{out}^{IMN}| \Rightarrow |\Gamma_{in}^{IMN}| = Z_{S}^{*}, \text{ then } Z_{out}^{IMN} \neq (Z_{in}^{AN})^{*}$$



 $\Rightarrow$  IMN losses can be exploited to change  $Z_{out}^{IMN}$ 

### CASE STUDY: ADVANCED LOSS-AWARE DESIGN METHODOLOGY (3/4)

• LNA equivalent noise temperature  $T_N$ , neglecting OMN noise

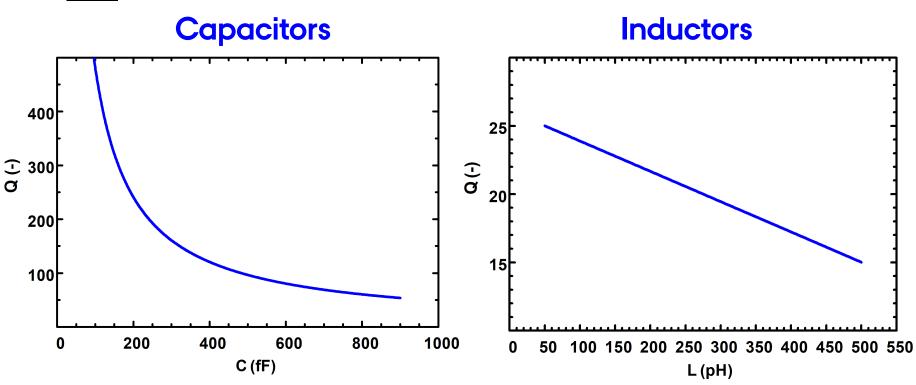
$$T_N \approx T_0 \left( \frac{1}{\boldsymbol{G}_A^{IMN}} - 1 \right) + \frac{T_{Nmin}^{AN}}{\boldsymbol{G}_A^{IMN}} \left( 1 + \Delta \theta_R^{AN} \frac{\left| Z_{ON}^{AN} - \boldsymbol{Z}_{out}^{IMN} \right|^2}{4R_{ON}^{AN} \boldsymbol{R}_{out}^{IMN}} \right)$$

- IMN design goals
  - If  $Z_{out}^{IMN} = Z_{ON}^{AN}$ , AN noise contribution is minimized
  - To minimize IMN noise contribution, IMN available gain ( $G_A^{IMN}$ ) must be maximized

### $G_A^{IMN}$ and $Z_{out}^{IMN}$ are not independent $\Rightarrow$ trade off is needed

 $T_{Nmin}^{AN}$ ,  $\Delta \theta_R^{AN}$ ,  $Z_{ON}^{AN}$ : AN noise parameters

### CASE STUDY: ADVANCED LOSS-AWARE DESIGN METHODOLOGY (4/4)


- Input integrated matching for maximum power transfer and minimum cascade noise (IIM for MPmCN)
  - $-Z_{in}=Z_S^*$
  - the equivalent noise temperature of the cascade of IMN and AN is minimized
- General guideline: IMN must comprise at least 3 components  $-\,C_2,\,L_1,\,L_2$  and  $C_1$

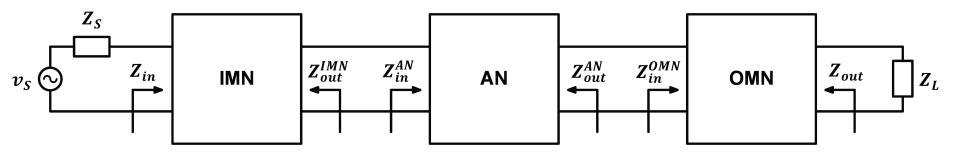
[Spasaro, et al., IEEE TCAS-I, 2019]

### CASE STUDY: ASSUMPTIONS (1/2)

- The two LNAs have:
  - same transistor biasing: current density minimizing cascode  $F_{min}$
  - minimum size transistors, to minimize power consumption (760µW from 2V supply)
  - equal values of  $C_0$ ,  $C_c$ , and  $L_c$  (OMN designed for maximum power transfer)

### CASE STUDY: ASSUMPTIONS (2/2)



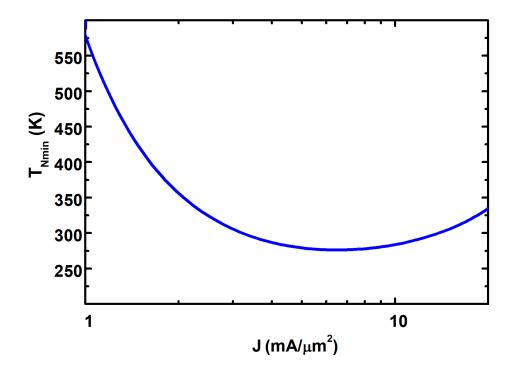

- Passive components
  - MIM capacitors, available within the design kit
  - linear regression of the Q of inductors between 25 for 50 pH and 15 for 500 pH (@ 60 GHz)

### IMPACT OF LOSSES: BRIEF RECALLS ON NOISE INVARIANTS (1/2)

- How can we assess the impact of MN losses?
- By focusing on quantities that lossless MNs keep unchanged: invariants
- An invariant which measures the noise performance of an LNA is a **noise invariant**

### IMPACT OF LOSSES: BRIEF RECALLS ON NOISE INVARIANTS (2/2)

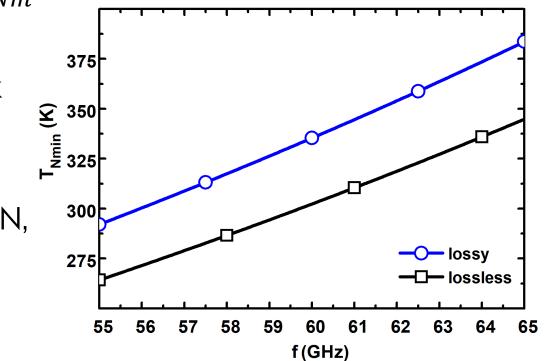
#### LNA with lossless reciprocal feedforward MNs




• The minimum equivalent noise temperatures of the LNA  $(T_{Nmin})$  and AN  $(T_{Nmin}^{AN})$  are equal

$$T_{Nmin} = T_{Nmin}^{AN}$$

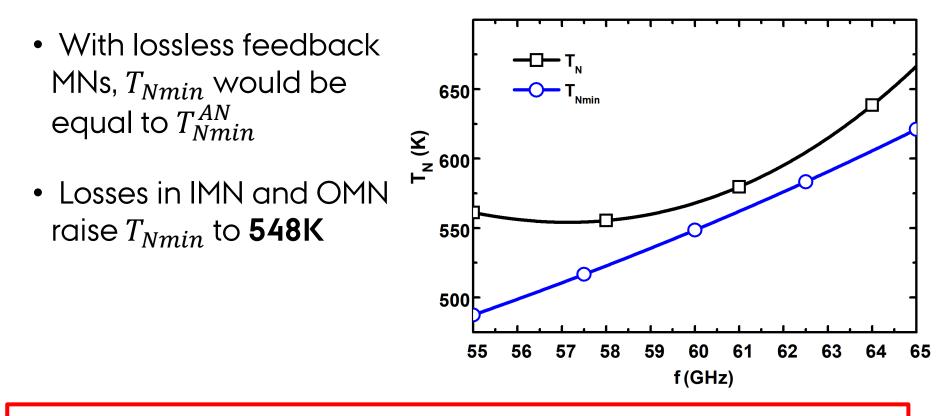
$$\Rightarrow T_{Nmin}^{AN}$$
 is a noise invariant


### IMPACT OF LOSSES: CASCODE AMPLIFIER



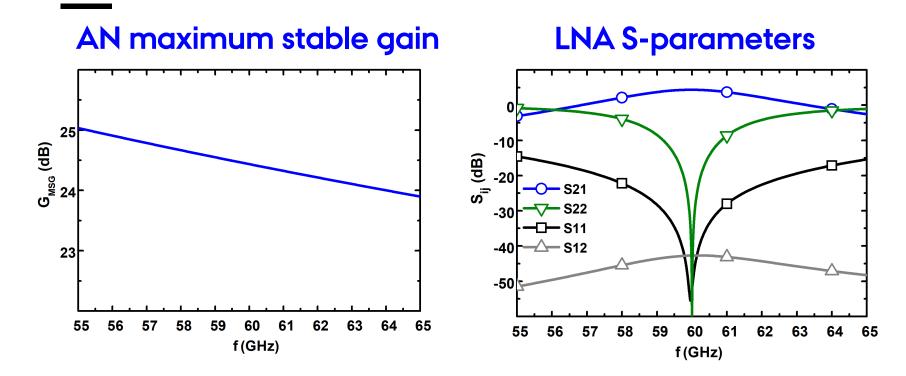
- The minimum equivalent noise temperature  $T_{Nmin}^{CAS}$  of the **cascode** amounts to **276 K**
- The corresponding current density is equal to **6.6 mA/µm<sup>2</sup>**

### IMPACT OF LOSSES: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (1/3)


- The design of  $C_2$ - $L_E$  feedback leads to an increase in  $T_{Nmin}^{AN}$  with respect to  $T_{Nm}^{CAS}$
- With lossless feedback MN,  $T_{Nmin}^{AN} = 303$ K
- With lossy feedback MN,  $T_{Nmin}^{AN} = 336K$

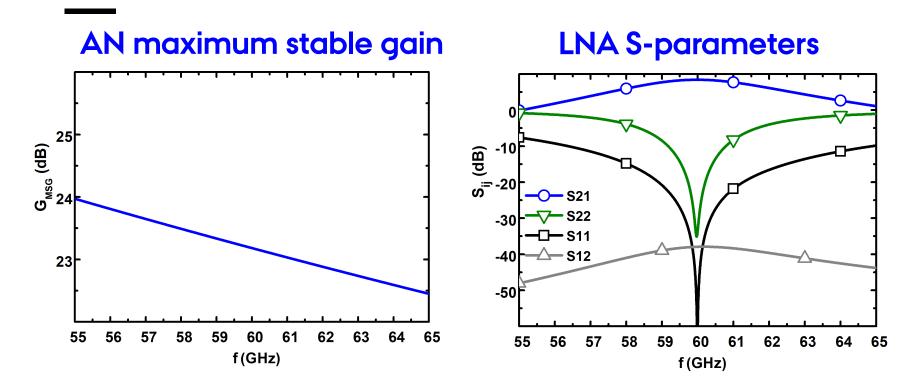


 $\Rightarrow$  11% increase of  $T_{Nmin}^{AN}$  due to feedback losses


### IMPACT OF LOSSES: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (2/3)

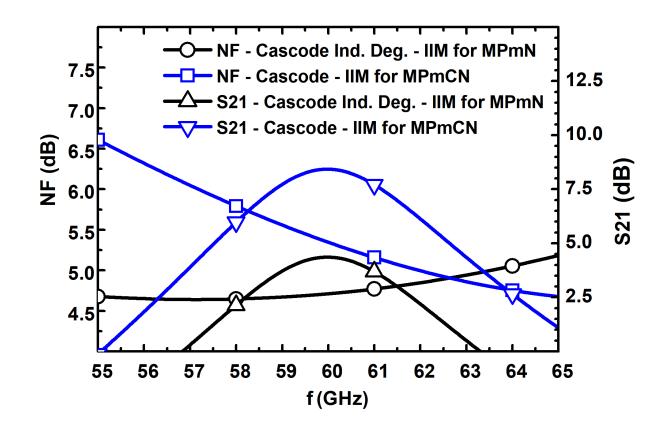
• The LNA design is completed by sizing IMN and OMN




 $\Rightarrow$  98.5% increase of  $T_{Nmin}$  with respect to  $T_{Nmin}^{CAS}$ 

### IMPACT OF LOSSES: TRADITIONAL LOSS-LESS DESIGN METHODOLOGY (3/3)




- Despite AN maximum stable gain  $(G_{MSG}^{AN})$  of **24.4 dB**, MN losses reduce  $S_{21}$  to **4.4 dB**!
- IMN and OMN losses spoil transistor gain potential

# IMPACT OF LOSSES: ADVANCED LOSS-AWARE DESIGN METHODOLOGY



- Despite AN maximum stable gain  $(G^{AN}_{MSG})$  of **23.2 dB**, MN losses reduce  $S_{21}$  to **8.4 dB**
- The loss-aware methodology reduces the impact of losses

### **IMPACT OF LOSSES: COMPARISON**



 IIM for MPmCN achieves a superior gain S<sub>21</sub> of 8.4 dB with a slightly degraded NF

### **IMPACT OF LOSSES: RESULTS**

• As **IIM for MPmCN** improves **power-added noise temperature** ( $MT_0$ ) and **gain-noise excess** ( $\epsilon_{GN}$ ), the worse NF is well compensated by the higher gain

| Topology          | <i>S</i> <sub>21</sub> | NF     | $T_N$ | MT <sub>0</sub> | iP <sub>1dB</sub> | $\epsilon_{GN}$ |
|-------------------|------------------------|--------|-------|-----------------|-------------------|-----------------|
| Cascode Ind. Deg. | 4.4 dB                 | 4.7 dB | 568 K | 897 K           | -9 dBm            | -0.3 dB         |
| Cascode           | 8.4 dB                 | 5.3 dB | 703 K | 821 K           | -13 dBm           | 3.1 dB          |

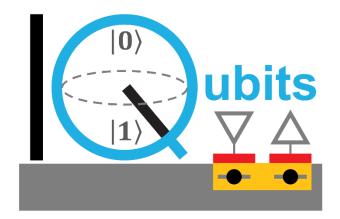
 $MT_0 = T_N / (1 - 1/G_A)$ 

 $\epsilon_{GN} = S_{21}[dB] - NF[dB]$ 

# CONCLUSIONS (1/2)

- The evolution of silicon technologies has led to transistors with excellent performance for operation at mm-waves
- However, losses in passive devices impede full exploitation of transistors potential in mm-wave IC design
- We focused on mm-wave LNA design, unveiling (quantitatively) the dramatic performance degradation due to MN losses and the benefits of loss-aware design strategies

## CONCLUSIONS (2/2)


• The results indicate the strong **need of further technology** advances towards better passives

- new materials

- new technology processes

 Also, loss-aware design methodologies are a must and key to design ICs and systems in the mm-wave frequency range and beyond

### ACKNOWLEDGMENTS







