Silicon Spin Qubit Control and Readout Circuits in 22nm FDSOI CMOS

R.R. Severino, M. Spasaro, D. Zito

WIRELESS TRANSCEIVERS
Department of Engineering, Aarhus University, Denmark
domenico.zito@eng.au.dk

2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020
Outline

• Silicon-based monolithic quantum processor
 — EU H2020 FET Open project IQubits
• Silicon electron/hole spin qubits
• Qubit control and readout techniques
• Qubit ICs
• Conclusions
Si-based quantum processors

• Quantum supremacy
 – Promises disruption
 – Requires highly-scalable quantum processors

• Early-stage approaches (multi-chip)
 – Quantum chip ($T < 100 \text{ mK}$)
 – Classical chip for control and readout ($T \sim 4 \text{ K}$)
 – Bulky instrumentation
 – Bulky interconnects

⇒ Not scalable
Si-based monolithic quantum processor: EU H2020 project IQubits

• Building blocks for highly-scalable quantum processor in ultra-scaled (22nm and below) FDSOI CMOS foundry techs
 — Electron/hole-spin qubits operating at $T \geq 3$ K
 — Co-integration of qubits with control and readout (RO) circuits
 — www.iqubits.eu

• Here we address the preliminary design and considerations
 — Signal generator (SG)
 — Transimpedance amplifier (TIA)

[S. Bonen et al., IEEE EDL, 2019]
Silicon electron/hole spin qubits

• Advantages
 ─ Long coherence time (isotopically-purified Si)
 ─ Compatibility with IC manufacturing techs for high-scalability

• Implementations of double quantum dots (DQDs)

[R. Maurand et al., Nature Commun., 2016]
[S. Bonen et al., IEEE EDL, 2019]

[D.M. Zajac et al., Science, 2018]
Qubit Control & RO: Magnetic field effect on spin (1/2)

- Zeeman splitting of spin states
 - Static field $B_0 \hat{z}$ lifts degeneracy
 - Energy separation $E_Z \propto B_0$
 - Spin precession about z-axis with Larmor frequency $f_L = E_Z / \hbar$
Qubit Control & RO: Magnetic field effect on spin (2/2)

- **Rabi oscillations**
 - Magnetic field $B_1(t)$ rotating at f_L in xy-plane (*perturbation*)
 \Rightarrow spin-up probability varies periodically with duration time
 -Freq. of oscillations: Rabi frequency (f_R)

- **Rotating wave approximation (RWA)**
 - Rotating field approximated by oscillating field $B(t)$
 - Requires $f_R \ll f_L$

$$B(t) = B_1(t) + B_2(t)$$
Qubit Control & RO: Spin manipulation & RO techniques

• Spin manipulation
 – Electron-spin resonance (ESR): $B(t) \propto I(t)$
 – Electric dipole-spin resonance (EDSR): $B(t) \propto V(t)$

• RO
 – Energy-selective (ERO)
 – Tunnel-rate-selective (TR-RO)
 – Spin blockade + charge sensor
 – Gate reflectometry

ES: Excited state GS: Ground state μ_{res}: Electrochemical potential of reservoir
Monolithic qubit ICs: Performance considerations

- Qubit operation at 3 K
 - \(E_Z = k_B T \approx 0.25 \text{ meV} \)
 - \(f_L \approx 60 \text{ GHz} \)

- TIA
 - Expected tunneling currents \(\sim 10 \text{ pA} - 10 \text{ nA} \)
 - \(V_{out} \sim 1 \text{ mV} \) on 50\(\Omega \) test equipment (experimental proof)
 - Transimpedance gain: 100-140 dB\(\Omega \)

- SG
 - Voltage-controlled oscillator (VCO)
 - Phase noise (PN) affects fidelity

Fidelity: Measures how well a physical system implements a quantum gate

[S. Bonen et al., IEEE EDL, 2019; M.J. Gong et al., IEEE RFIC, 2019]
Monolithic qubit ICs: Fidelity considerations

• $\pi/2$ rotation gate

• Fidelity limited by RWA

 – 99.9% $\Rightarrow f_R = f_L/80 = 750 \text{ MHz}$

 – 99.3% $\Rightarrow f_R = f_L/5 = 12 \text{ GHz}$

• We estimated PN required for target infidelity of 125×10^{-6}

<table>
<thead>
<tr>
<th>f_R</th>
<th>T_p</th>
<th>PN1</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 MHz</td>
<td>330 ps</td>
<td>-74 dBC/Hz</td>
<td>4.7 ps</td>
</tr>
<tr>
<td>12 GHz</td>
<td>20 ps</td>
<td>-62 dBC/Hz</td>
<td>280 fs</td>
</tr>
</tbody>
</table>

1At 1MHz frequency offset from f_L

T_p: pulse duration

Δt: uncertainty of T_p

[J.P.G. van Dijk et al., Physical Review Applied, 2016]
Monolithic qubit ICs: Design approach

• Cryo characterization of 22nm FDSOI CMOS down to 3.3 K
 — Peak g_m of n- and p-MOSFET improves
 — Peak-f_T & peak-f_{max} current densities nearly constant
 — Passive devices exhibit lower losses
 — Normalized g_m nearly constant below 77 K

• Circuits designed at 300 K and analyzed down to 77 K
 — Simulation convergence
 — Accurate models
 — Similar or better performance expected at 3 K

[S. Bonen et al., IEEE EDL, 2019]
[M.J. Gong et al., IEEE RFIC, 2019]
Monolithic qubit ICs: **Signal generator (SG)**

- VCO settling time \(\approx 200\) ps (too long wrt \(T_p\) of 20 ps)

- SG based on 60-GHz VCO with on/off amplitude modulation

- VCO in steady state and on/off mm-wave switches to transfer the Larmor frequency \(f_L\) carrier to the DQD control gate
Monolithic qubit ICs: PN of VCO

- PN at 1MHz frequency offset from 60GHz carrier
 - -90 dBc/Hz at T = 300 K
 - -100 dBc/Hz at T = 77 K
- VCO PN well below -62 and -74 dBc/Hz emerging from fidelity considerations
Monolithic qubit ICs: SG output signal

330ps $\pi/2$ pulse for $f_R = 750$ MHz
20ps $\pi/2$ pulse for $f_R = 12$ GHz

- Rise and fall times of V_C set equal to $\Delta t/2$
- Output voltage (V_{SG}) of SG generated correctly
- Pulses are slightly longer due to switch non-idealities
Monolithic qubit ICs: Transimpedance amplifier (TIA)

- Circuit topology
 - Mutuated from [M.J. Gong et al., IEEE RFIC, 2019]
 - But here only two inductors of 400 pH ⇒ Higher scalability
- Transistors biased at peak-f_{max} current density
- Input-stage MOSFETs sized for minimum input-referred noise-current spectral density (i_{nTIA})
Monolithic qubit ICs: TIA performance

- Simulation results at 300 K (black) and 77 K (blue)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>P_C (mW)</th>
<th>Z_{21} (dBΩ)</th>
<th>BW (GHz)</th>
<th>i_{nTIA} (pA/√Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>4.9</td>
<td>108</td>
<td>18</td>
<td>0.89</td>
</tr>
<tr>
<td>77</td>
<td>5.5</td>
<td>111</td>
<td>25</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Conclusions

• Summary of techniques for control and RO of electron/hole spin qubits
• Preliminary design of SG and TIA in 22nm FDSOI CMOS tech
 • SG
 — 60GHz sinusoidal pulses for $\pi/2$ rotation gates with f_R up to 12 GHz and min T_p of 20 ps
 • TIA
 — Z_{21} of 108 dBΩ, 3dB BW of 18 GHz, i_{nTIA} of 0.89 pA/√Hz at 300 K
• Future works
 — Physical implementation
 — Experimental verifications down to 3 K
Acknowledgments

This work has been co-funded by the European Union’s Horizon 2020 Research & Innovation Programme through the FET Open project IQubits under Grant Agreement N. 829005

Sponsors

KEYSIGHT TECHNOLOGIES

Poul Due Jensen Foundation
Open access

This is an open access document distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits restricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.